Measuring the Spontaneous Curvature of Bilayer Membranes by Molecular Dynamics Simulations

نویسندگان

  • Han Wang
  • Dan Hu
  • Pingwen Zhang
چکیده

We propose a mathematically rigorous method to measure the spontaneous curvature of a bilayer membrane by molecular dynamics (MD) simulation, which provides description of the molecular mechanisms that cause the spontaneous curvature. As a main result, for the membrane setup investigated, the spontaneous curvature is proved to be a constant plus twice the mean curvature of the membrane in its tensionless ground state. The spontaneous curvature due to the built-in transbilayer asymmetry of the membrane in terms of lipid shape is studied by the proposed method. A linear dependence of the spontaneous curvature with respect to the head-bead diameter difference and the lipid mixing ratio is discovered. The consistency with the theoretical results provides evidence supporting the validity of our method. PACS: 87.16.D-, 82.70.Uv

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular dynamics simulation of interaction of Melittin and DMPC bilayer: Temperature dependence

The interaction between proteins and membranes has an important role in biological pro-cesses.We have calculated energies of interaction between Melittin and DMPC bilayer in differenttemperatures. We have used the CHARMM software for MD simulation under the canonical (N,V, E) ensemble at different temperatures. The computations have shown that water moleculeshave more penetration into the bilay...

متن کامل

Coarse-grained simulations of branched bilayer membranes: effects of cholesterol-dependent phase separation on curvature-driven lipid sorting

Our recent coarse-grained (CG) molecular dynamics (MD) simulations of membranes with a hemifused-ribbon (λ-shaped) geometry showed curvature-driven demixing leading to enrichment in dioleoyl-phosphatidylethanolamine (DOPE) in a negatively-curved region (at C –0.8 nm) of a DOPE/dipalmitoyl-phosphatidylcholine (DPPC) membrane. Here we extend the analysis with respect to lipid composition and simu...

متن کامل

Stability of asymmetric lipid bilayers assessed by molecular dynamics simulations.

The asymmetric insertion of amphiphiles into biological membranes compromises the balance between the inner and outer monolayers. As a result, area expansion of the receiving leaflet and curvature strain may lead to membrane permeation, shape changes, or membrane fusion events. We have conducted both atomistic and coarse-grained molecular dynamics simulations of dipalmitoyl-phosphatidylcholine ...

متن کامل

Energy study at different solvents for potassium Channel Protein by Monte Carlo, Molecular and Langevin Dynamics Simulations

Potassium Channels allow potassium flux and are essential for the generation of electric current acrossexcitable membranes. Potassium Channels are also the targets of various intracellular controlmechanisms; such that the suboptimal regulation of channel function might be related to pathologicalconditions. Realistic studies of ion current in biologic channels present a major challenge for compu...

متن کامل

Changes in lipid density induce membrane curvature.

Highly curved bilayer lipid membranes make up the shell of many intra- and extracellular compartments, including organelles and vesicles. Using all-atom molecular dynamics simulations, we show that increasing the density of lipids in the bilayer membrane can induce the membrane to form a curved shape.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011